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In the optical region of frequencies, the excitation spectrum of interacting polariton waves in molecular
crystals has been studied by means of the polariton Hamiltonian, which includes both cubic and quartic
anharmonic terms with respect to the polariton operators. A general expression for Dyson’s equation is
developed which describes the system of interacting polariton fields and the polarization operator is a
function of two-, three-, and mixed-polariton Green’s functions. The polarization operator and, therefore,
the polariton Green’s function is then evaluated in successive approximations. In the zero approximation, the
quartic anharmonic terms in the polariton Hamiltonian renormalize the frequencies of each polariton mode.
The polarization operator is calculated in the lowest order via a zeroth-order renormalized Hamiltonian; the
derived expression contains terms arising from the cubic and quartic anharmonicity and is a function of the
renormalized frequencies of the polariton modes. In this approximation, the spectral function for the
polariton spectrum is found to have a shape of an asymmetric Lorentzian line when the frequency dependence
of the energy shift and spectral width is neglected. Resonances occur (i) when either two renormalized polari-
tons are created or one is created and the other is absorbed (two-polariton process), and (i) when three
renormalized polaritons are created or two are created and one is absorbed (three-polariton process) by a
single incident renormalized polariton and vice versa. Formulas are derived for the probability amplitudes
corresponding to the third- and fourth-order nonlinear scattering processes in the transparent range of fre-
quencies of the crystal; an expression for the energy of excitation is developed where the frequency of the
polariton mode is dressed by the field of all the others in the first approximation and propagates in the crystal
without damping. A discussion is given on how the derived results can be improved by calculating the
polarization operator in the next order in such a self-consistent manner as to become a function of the
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frequencies of the polariton modes, which are correct in the first approximation.

I. INTRODUCTION

N general, polariton waves in crystals consist of
quasiparticles, which propagate in the medium with
definite energy and momentum that satisfy the linear
Mazxwell equations. In the optical region of frequencies
of molecular crystals, polaritons are defined in the lowest
approximation! as tightly bound electron-hole pairs
dressed by photons of the electromagnetic field. In
mathematical language, the exact diagonalization of the
bare exciton Hamiltonian of the crystal plus the inter-
action with the transverse electromagnetic field in the
lowest approximation, i.e., when the anharmonic part
of the total Hamiltonian due to scattering processes is
neglected, leads to normal electromagnetic (polariton)
waves in the crystal which satisfy the microscopic Max-
well equations. The diagonalization can be achieved
either by means of Bogoliubov’s canonical transforma-
tion!? or the Green’s-function method.?

The propagation of polariton waves in the medium
is damped. In pure crystals and at finite temperatures,
the damping is mainly caused by the interaction of
polaritons with the acoustic phonon field of the crystal?;
this process governs the optical absorption bands in
molecular crystals.* At zero temperature, polaritons are
either scattered by bare excitons® or interact with each

* Issued as N.R.C. Report No. 10867.
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other, and both processes lead to the appearance of
nonlinear optical effects. Scattering by impurities and
defects are possible mechanisms as well. The kinematic
interaction of the bare exciton waves in molecular crys-
tals leading to an energy spectrum which has acoustic
dispersion and the possible appearance of Bose-
Einstein exciton condensation has been recently studied
by Agranovich and Toshich.®

The purpose of the present work is to formulate a
general theory concerning the optical excitation spec-
trum of molecular crystals arising from the interaction
of polariton waves with each other at zero temperature.
In Sec. II, the equations of motion for the polariton
Green’s function, which is in a matrix form, are derived
with respect to both time arguments; use has been made
of the polariton Hamiltonian consisting of the unper-
perturbed part plus the interaction Hamiltonian that
includes both cubic and quartic anharmonic terms with
respect to the polariton operators. Then, Dyson’s equa-
tion for the polariton spectrum is developed and the
polarization operator is a function of two-, three-, and
mixed-polariton Green’s functions.

A general formula for the polariton Green’s function
is derived in Sec. III and then is evaluated in successive
approximations. In the zero approximation, the unper-
turbed polariton energy is renormalized and the renor-
malization is caused by the quartic anharmonic terms
of the interaction Hamiltonian. A renormalized zeroth-
order Hamiltonian is constructed and is used to calcu-

¢V. M. Agranovich and B. S. Toshich, Zh. Eksperim. i Teor.
Fiz. 53, 149 (1967) [English transl.: Soviet Phys.—JETP 26,
104 (1968)].
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late the polarization operator in the lowest order. In
this approximation, the expression for the polarization
operator contains terms due to the cubic and quartic
anharmonicity whose energy denominators give rise
to poles which are equal to &,(q)+a&,(k—q) and
@py (K1) 0y, (q)+,,(k—q—ki), respectively, where
@,(q) is the renormalized frequency of the pith po-
lariton mode with wave vector q. The poles at the
frequencies () —Gp(k—q) and  dp,(Ki)—@p(q)
+,(k—q—k;) arise entirely from the renormalization
procedure.

The spectral function for the polariton spectrum is
calculated in Sec. IV by considering the imaginary part
of the polariton Green’s function in the first approxima-
tion. The spectral function is found to have the shape
of an asymmetric Lorentzian line in the region of fre-
quencies where both the real part of the polarization
operator and the damping function vary slowly with
respect to frequency. Formulas are developed for the
energy shift and the width of the resonance line.
Resonances occur when frequencies equal to either
‘:’m(q)i‘:’m(k_q) or G)pl(kl)ﬂ:épz(q)i&ps(k—q_kl) are
created or annihilated by a single renormalized polari-
ton and vice versa. Far from resonance, the form of the
spectral function has been considered.

In the transparent region of frequencies of the crystal
an expression is obtained for the energy of the polariton
mode in the first approximation which represents an
elementary excitation (physical polariton), where the
polariton mode is dressed by the field of all the others
and propagates in the medium without damping. In
this case, the obtained expressions for the probability
amplitudes corresponding to the third- and fourth-order
nonlinear optical processes can be reduced, after making
some approximations, to describe the specific problems
studied by Toshich.” Finally, the derived results are
improved by considering the polariton Green’s function
in the second approximation. The Green’s functions,
that contained in the expression for the polarization
operator, are calculated by means of an equivalent
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first-order Hamiltonian in such self-consistent manner
so that in the final result the polarization operator is
expressed as a function of the polariton frequencies,
which are correct in the first approximation.

II. DYSON’S EQUATION FOR
POLARITON SPECTRUM

The Hamiltonian describing the polariton spectrum
for a molecular crystal in an undisplaced lattice in-
cluding cubic and quartic anharmonic interactions is
taken as

30=50® 43014501V (1)

where 3¢ is the Hamiltonian for the unperturbed
polariton spectrum

0= <:fc<°>>+§ wp (K&, (k)& (K). )

The excitation energy of the polariton spectrum in the
zero approximation, w,(k), with wave vector k of the
pth band satisfies the linear Maxwell equation

c*k*= w,* (B) K, (k) ], )

where ck is the energy of the electromagnetic field and
[&,w,(k)] is the real index of refraction of polariton
waves in the medium with energy w,(k) and polariza-
tion A. The quantity (3¢©®) is the average energy of
interaction of the electron-hole pairs (dressed by the
electromagnetic field) that are tightly bound at the
lattice sites of the crystal. Explicit expressions for
M Kk,w,(k)] and (3C©@) have been given elsewhere.?
The creation and annihilation operators for the polariton
field are denoted by £,7(k) and £,(k), respectively, and
satisfy Bose statistics. The system of units where #=1
is used throughout.

In (1), 3¢ and 3C'V are the cubic and quartic an-
harmonic terms with respect to polariton operators,
respectively, describing the scattering of the polariton
waves and they are equal to

+B(k1,P1; kz,pz; —‘kl—k2; P3)£p1(k1)£pz(k2)£ps(“kl_ks)‘l‘H-C-]7 (4)

o= ¥ [a(ko; Ke,pe; kit ks, p3) £ (K1) En(Ka) £ (Kot ko)
ki,ks,p1,p2,03

Jetv = Z [Ql(kl,pl; kz,m; ks,ps; —ki—k, -—k;;, P4) Em(kl) Epz(k2) Eps(ks) 5;»4( "kl -k, “kS)
ki,keo, k3
P1,p2,03,04

+Qa(Kk1,p1; Kope; Ks,ps; KitKat-Ks, pa) &pu (K1) E0o(Ka) £pa(lea) Epf (Kot k)
+Qs(kip1; Koy02; Ks,p3; Ki+-Ka—Ks, pa) £, (K1) £ (k) EpaT(ka) Eod (K1t ko —ks)+H.c.]. (5)

The coupling functions in the expression for the
Hamiltonian 3¢ include terms corresponding to the
interaction between the charges in the crystal as well
as the interaction between the charges and the electro-
magnetic field and they have been discussed in detail

by Ovander®; we refer to his review paper for details.
The Hamiltonian 3¢ describes the interaction of three

7 B. S. Toshich, Fiz. Tverd. Tela9, 1713 (1967) [ English transl.:
Soviet Phys.—Solid State 9, 1346 (1967)].

8 L. N. Ovander, Usp. Fiz. Nauk 86, 3 (1965) [ English transl.:
Soviet Phys.—Usp. 8, 337 (1965)].
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polaritons with each other and has been used by
Agranovich ef al.® to calculate the expression for the
third-order nonlinear polarizability tensor corresponding
to the optical spectrum of anharmonic crystals.

The quartic anharmonic Hamiltonian 3¢V gives an
account of the interaction of four polaritons. The
coupling functions Qi, Q2, and Qs contain terms which
are due not only to the Coulomb interaction between
the charges but also terms arising from the fact that the
original bare-exciton operators are not exact Bose oper-
ators. For a multilevel system, the bare-exciton opera-
tors are not even exactly Pauli operators as it is the
case for a two-level system. Following the Holstein-
Primakoff transformation for the spin-wave operators,
Toshich” and Agranovich and Toshich® have developed
a similar representation where the bare-exciton opera-
tors are transformed into Bose operators. The bare-
exciton Hamiltonian in the new representation contains
terms arising from both kinematic as well as dynamic
exciton-exciton interactions in complete analogy with
the spin-wave theory. Unlike the spin-wave spectrum,
the kinematic exciton-exciton interaction leads to new
phenomena like the possibility of exciton condensation.®
Therefore, the coupling functions Qi, Qs, Qs include
all the fourth-order anharmonic interactions as de-
scribed in the paper by Toshich?; we refer to his paper
for details. In view of the complexity of the expressions
for the coupling functions that appear in the expressions
for 3¢™ and 3C'Y, their explicit expressions shall not be
given here but they can be obtained by the procedure
discussed by Ovander® and Toshich,” respectively. Our
main interest is based on how the unperturbed spectrum
of 3¢ is modified due to the presence of 3¢™! and 3¢tV
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in the range of frequencies near and far from resonances.
On the other hand, the explicit expressions for the
coupling functions appearing in (4) and (5) shall be
needed only when application of the final results is
made to specific crystals.

To study the polariton spectrum, we introduce the
Fourier transform of the retarded double-time polariton
Green’s function in the matrix form

G,(kyw)=((4,(k); 4,'(k)))
£ (k)

=<<<$p+(_k)>s<£p*<k>sp<—k>>>>, ©)

where the Green’s function is defined in the usual way,
the operators £,(k) and £,7(k) are in the Heisenberg
representation, and their time arguments have been
suppressed for convenience. In (6), the average is over a
canonical ensemble appropriate to the Hamiltonian 3¢
and the Green’s function G,(k,w) satisfy the following
equation of motion:

wG(k,w) = (1/2m)([4,(k), 4, (k) ]-)3.v

+{([4,(k),5¢]-; 4,'(K))), (7)
where the last term in (7) represents also the Fourier
transform of the corresponding Green’s function and 3¢
is the total Hamiltonian of the system. Using the Hamil-
tonian (1) and (7), we derive the equation of motion for
the Green’s function G,(k,w):

G, (k,w)Gp(k,w) =T
+((B(k,p)+F(kp); 4,1 (K))), (8)

where we have made use of the following notation:

1 0 1 0
f:-( )(27)—‘, GO (k) = [Aw—a, ()], &=< ) ©)
01 0 —1
_ Bio(q,p1; k—q, p2)
Blkp)= ¥ ( ’ ) (10)
wever \B_y,'(—q, p1; ¢ —K, p2)
- Fip(K1,p1; q,p02; k—k17F(q, p3)
Flp)= ¥ ( ‘ > (1)
plq;}:‘m ngPT(_kli P15 —4q, pQ;:I:q+k1—'k, p3)

ka(q:pl; k —q, P2)

=a(q,p1; K—q, p2; K,p) £, (Q) £k —q)+368*(—K, p; q,p1; K—0q, p2) & (— @) &' (q—k)

Frp(k1,p1; ,p2; k—K17Fq, ps)

+2a*(_k) p;bqapl; q_k’ Pz)fpz(k—Q)Emf(‘fl) ’ (12>

=Qs(k1,01; Q,p2; K—K1—q, p3; K,p) £,1 (K1) £0(Q) Epg(B— K1 — Q) +4Q:*(—K1, p1; —0, p2; —k+ki1q, p3; k,p)
X Epsf(kl"*_q_'k) EpzT(“Q)EplT(—kl)+4Q3(k1:P1§ q,02; k;P; kl"l"q_k; PS)Epl(kl) Epz(q) SpsT(kl_}"q_k)

+30:*(—Ky, p1; —q, p2; Kyp; Ki—q—K, p5) £y (K—K1—q) £,,' (— Q) T (=)

(13)

9V. M. Agranovich, L. N. Ovander, and B. S. Toshich, Zh. Eksperim. i Teor. Fiz. 50, 1332 (1966) [English transl.: Soviet

Phys.—JETP 23, 8385 (1966) ].

1 D. N. Zubarev, Usp. Fiz. Nauk 71, 71_(1960) [English transl.: Soviet Phys.—Usp. 3. 320 (1960)].
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The equation of motion for the Green’s function that
appears on the right-hand side of (8) is equal to

((B(ls,p)+F(s,0); 4, (K))oG) ™~ (k,00)
= (1/2m)([Bp)+ F(lep), 4,10 1) s
+{(Bk,p)+F (kp); B (lk,p)+F' (k,p))) . (14)
Substituting (14) into (8), we derive Dyson’s equa-
tion:
Go(k,w) =G, (k,w) 1 G, (k,w) I, (k,w) G, (k,w)
=G, (I,w)+G, 0 (k,w) 1T, (k,0) Gk yw)
where
Hﬂ(k)w) = (277)([3 (k,p) -I—'F(k;p): A~PT(k):l~&>t=t'
4 (2m)*((B(kp)+F (k,p) 3
Bt(k,p)+F'(k,p))), (16)
and the polarization operator I1,(k,w) is given by
11, (k) = T, (ko) [T 4G, (ke,00) T, () 78, (17)
then (15) becomes
LG, @1 (k) —TT,(k,00) ]G (k) = 1. (18)

The frequencies, where the localized or trapped polari-
ton spectrum occurs, satisfy the dispersion relation

I+ Gp(oo) (k) Rell,(k,w)=0,

(15)

(19)

where Rell,(k,w) is given by the real part of the expres-
sion (16). The energy spectrum determined by the
solutions of (19) corresponds to the strong coupling
case and in this region of frequencies w, satisfying Eq.
(19), the real part of the Green’s function G,(k,w) goes
to zero while the imaginary part of G,(k,w) is propor-
tional to the imaginary part of II,(k,w) which deter-
mines the shape of the localized polariton bands. On
the other hand, the energy spectrum of propagating
polariton waves occurs at frequencies w which are out-
side the region of the solutions of (19), i.e., when

I+G, ™) (k) RelL,(k,w) 0. (20a)

Dy () = 0, (K) £8,(B)+ 5[ P1a(k,p; )+ Prak,p; —w) = Pra(k,p; w) Pra(k,p,; —w) ],
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In this case, we may neglect the second term appearing
in the denominator of (17) in comparison with unity;
then the expression (18) may be written as

LG, O (kyw) —P(k,p; ) ]Go(kw) =1,
where the renormalized unperturbed Green’s function
G, (k,w) is equal to
Go1(k) = G, 00 ()

—([B(kp)+F(k,p), 4,/ (&)&) 1=, (21)
and P(k,p; w) is the polarization operator arising from
the anharmonic polariton-polariton interactions in the

crystal in the region of frequencies w which satisfy the
requirements of (20a) and is given by the expression

Plip; )= Qn)(Bllen)+Fke);
Bl(k,p)+Fi(kp))). (22)
In the following sections we shall study the polariton

Green’s function and the energy spectrum determined
by the solutions of (20b).

(20b)

III. POLARITON GREEN’S FUNCTION

If we introduce the Green’s function
Dy(kw)=((&&)+£'(—=k); &' (k) + £(—K))),  (23)

then considering the diagonal and nondiagonal elements
of (20b) and taking into account that in the complex
w plane the components of the polarization operator
P(k,p; w) satisfy the relations

Pzz(k,p; w) = Pll(k)p; _w) = Pu(k,p; w)
and

Por(k,p; w) = P1a(k,0; —w)= P1a(k,p; ),
the expression for D,(k,w) is found to be
Dy(kyw) = (1/7) Qe ()

@p(k)=w,(B)+8 2° Qs(k,p; 40”5 K,p; 4,0"){Ew (T ()46 X Qu(—aq, 0’5 q,0"; k3 K, p)
9.0’ q,p"

X{w? =i, M (@), D (w)} 71, (24)

where
(25)
X{Ep(@)Er(—q)), (26)

& (K)=06 2 Qo(l,p; 4,0"; —Xp; 40 )& (D" (@))+4 3 [Qs(—0q, p'5 0,05 —K, p; Kyp)
q,p q,p’

In (25), the quantities Pn(k,p;w) and Pia(k,p;w)
represent the diagonal and nondiagonal elements of
(22), respectively, while the last two terms of (26) as
well as the expression for &,(k) result from the evalua-
tion of the commutator that appears on the right-hand
side of (21).

In the zero approximation, i.e., when all the elements

+301(=q, 0’5 40'; =4, 25 ) K (@& (—a))-  (27)

of P(k,p; w) are taken equal to zero, we have
D, (kyw) = (1/m)[6,(k) —@p(k) J[w? —a,%(k) I,

where the energy of excitation is determined from the
equation

(28)

@,*(K) = &,*(K) —a,*(k) , (29a)
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with the expressions for a,(k) and &,(k) given by (26)
and (27), respectively. The distribution functions ap-
pearing in (26) and (27) are calculated in the zero ap-
proximation from the corresponding Green’s functions
in the usual way and they are equal to

1 “-’p’( )
(er (@1 @)= —[1+ o
2

wpr(q

coth%ﬂ&pf(q)],

C7’::’ (q)

(Ep’*(q> gp’(q» = }l: -1+ COth%ﬁ‘I’p'(q):l )
2

wpr(q
<£n'<q)£p’(fQ)>= <Ep’f(Q)Ep'T(*q)>
1 ‘?’p'(q)

2 ‘:’p’(q)

coth38&,(q), (29b)

with 8= (kpT)™!, where kg is Boltzmann’s constant and
T the absolute temperature. In the limit when 8 —,
coth3Ba,(q) — 1, the distribution functions (29b) are
reduced to those at zero temperature.

The poles of the unperturbed Green’s function (28)
occur at frequencies w?=a,2(k), where @,%(k) is given
by (29a), which indicates that even in the zero approxi-
mation the polariton optical spectrum is renormalized
and the renormalization is caused by the quartic an-
harmonic interactions. We note that in deriving (26)
and (27) we have neglected contributions arising from
the cubic anharmonic terms when k=q and q=0. A
typical term of this kind has the form «(0,p; Op; k,p)

Ol () = 3, (K) =63, (k) + [0 () — &, (k) =00, () T, (ko) [ — 2,2 (k) T,

[&’pl(Q)"}_‘:’pz(k "Q)]

Ry (w)=2 V& (k, i
e @t en—a T

+2 Z V4(i)(k1Q)k1)
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X{£,(0)) and, therefore, all of them have been taken
equal to zero as should be the case for a crystal having a
center of symmetry.

In the first approximation the Green’s function,
D,M(k,w) is given by (24) but the expression for
Qx, ¥ (w) is now equal to

e, ® () = @, (k) £ 0p (k) + [ P11V (k,p,00)
+P11(0)(k,p, _w)iPm(O)(k;p;w)
+P1O, p, —w)],

where the superscript (0) indicates that the Green’s
functions involved in the diagonal and nondiagonal
elements of P(k,p; w) given by (22) must be calculated
in the zero approximation, i.e., in the approximation
which corresponds to the excitation spectrum deter-
mined by the poles of the Green’s function (21) or (28).
The renormalized zeroth-order Hamiltonian which gives
rise to the spectrum of (21) or (28) is given by

Beren @ = const+3 &, (k) &' (K)£, (k) +§ X 6,(k)
k,p K,p

(30)

X[E®E(—R)+ & K)E (k) ].

The expression for Q,®(w) has been calculated in
the Appendix by making use of the renormalized
zeroth-order Hamiltonian (31) and, in the limit of zero
temperature, is found to be equal to

1)

q,k1
p1,p2,03

Qiep ) (0) = iy & () 4 Rip () (32)
where
(33)
" [‘:’pl(Q) "a’pz(k - Q)]
> VS (k,q)
©p1p2 ( q)wz—[&’m(q}—-@pz(k—Q)]Q
[@p (k1) +@ps(Q)+@ps(k —q—k1) ]
“’2—[‘:’m(kl)+‘:’p2(Q)+&’pz(k_q"k1)]2
1 (K1) — o,y (Q) 0,5 (K —q — ks
1S P ek [@p (K1) —@p5(q) +&ps(k—q—k1) ] 34)

q,k1
PLP2,p3

The last term on the right-hand side of (33) gives a
small correction to the energy of excitation arising from
the renormalization of the (k,p) polariton mode in the
lowest approximation. The function Ry, ®(w) gives an
account of the scattering processes occurring among
the renormalized polariton modes. The first two terms
on the right-hand side of (34) describe the scattering
arising from the interaction between two polaritons with
energies @,,(q) and &,,(k—q) and their energy denomi-
nators correspond to energies of excitation which are
equal to &,,(q)+@,(k—q) and &,,(q) —@,(q), respec-
tively. The coupling functions V3 (k,q) and Vs (k,q)
are given by the expressions (A6)-(A9) in the Appendix.

wz_[‘:"pl(kl) _‘:’pz(Q)"l"I’ps(k"q ‘_kl)]2 .

Taking into account the relations #,>>u._, #,>v,, and
a>B, it is easily shown that V@ (k,q) >V (k,q),
Vs (k,q)2 Vs(k,q), ViP(k,q)2 Vs (k,q), and, in
particular, V3™ (k,q)/V;®(k,q)~ (#_/u.), where the
functions %, and v, are given by (A10). The expressions
for V3 (k,q) depend entirely on the numerical values
of the quantities &,,(q) and &,,(k—q), which are much
smaller than the unperturbed energies, &,,(q)<®,,(q),
&py(K—q)<K&,,(k—q). In the limiting case where both
®p,(q) and &,,(k—q) are equal to zero, then V3@ (k,q)
=0 and V3;®(k,q)= |a.(k,q) |2 On the other hand,’if
only one of them is equal to zero, i.e., either &,,(k—q)
=0 and &,,(q)>0 or vice versa, then V;&®(k,q)>0.
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Therefore, the chance that the second term on the
right-hand side of (34) will be observed experimentally
at very low temperatures depends on the numerical
values of both quantities % and v...

The last two terms on the right-hand side of (34)
represent the quartic anharmonic contributions to the
polarization operator arising from interaction of three
polaritons with each other with energies &,,(k1), @,,(q),
and @,,(k—q—Xky), respectively, and their energy de-
nominators have poles in the region of frequencies
@y (B)£0p,(qQ)+dpy(k—q—ki1). Let us examine the
three-polariton scattering amplitudes V,*(k,q,k;) and
V¥ (k,q,k;) as given by the expressions (A16) and
(A17), respectively. The first term on the right-hand
side of (A16) consists of the amplitude 3|Qa2=4Q:|?
multiplied by a factor which is of the order of unity,
while the amplitudes of the remaining two terms are
multiplied by factors which are much smaller than unity.
Hence, it is evident that the first term in (A16) gives
the main contribution to V.*(k,q,k;). The last two
terms in (A16) disappear in the limit when &1, &2, and &3
tend to zero simultaneously, but they become appreci-
able only as the quantities @1/@1, @o/@s, and @s/@s
approach unity. In fact, the ratios &1/@1, ®2/®2, and
&3/@; always are much smaller than unity; therefore,
both terms make up a small correction to the first term.
Taking into account that Qs>Qs, it follows that
Vi (k,q.k) 2 Ve (k,q,k1).

The expression for V4 (k,q,k:) shown by (A17) as
well as the last two terms in (A16) are the outcome of the
renormalization procedure. The importance of the
scattering amplitude V@& (k,q,ki) is due to the fact
that it is responsible for the appearance of the pole in
the frequency region of &1 —&2+&3 at zero temperature.

C. MAVROYANNIS 1

Though V,® (k,q,k,) is smaller than V. (k,q,k:) by
at least one order of magnitude, it is, in general, a
finite quantity different than zero unless the quantities
&1/&1, Bo/ds, and &3/@; are negligibly small simultane-
ously, which is rather a rare possibility. Hence, it is
quite possible that one or more than one of the (6/®)’s
may take such a value as to make the pole at the fre-
quency &i;—®2+@; observable experimentally. Of
course, the described process may be of importance only
at very low temperatures because at finite temperatures
the corresponding process arising from the polariton-
phonon interaction is predominant. In (A17),
Vi (k,q.k) 2 Vi (kg k).

We remark that the form of the expression for
Ry, (w) given by (34) as a function of the renormalized
polariton frequencies is similar, apart from the specific
expressions for the Vg’s, Vi’s, and those for the re-
normalized frequencies, to that derived for the polari-
zation operator corresponding to the polariton spectrum
in the infrared region of frequencies of anharmonic
crystals at finite temperatures.!! In this particular case,
infrared polaritons consist of low-energy photons dressed
by the optical-phonon field in dielectric crystals.

In general, the expression for Ry,®(w) is a complex
quantity and may be written as

Ry, (w+1€) = ReRy, ) (w) —1 ImRy., F (w) ,

lime — +0 (35)
where ReRy,® (w) is the real part of Ry, (w) which is
obtained from the expression (34) when the principal

value over the summations or integrations is taken.
The imaginary part of Ry,™®(w) is equal to

ImRkp(i)(w) =m Z { V'o‘(i) (k,Q) [5(0’_‘:’171((1) *&’pz(k _q)) - 5(w+53p1(Q)+‘;’p2(q))]
q,p1,p2

+ I73(i>(k;Q)[:5(w—G’pl(Q)‘l-&’pz(k—Q)) - 3(w+5’p1(® _‘:’p(k_q))]}
+ Z { V4(i>(k,q,k1) [B(w—&’m(kl) ““‘I’pz(Q) _‘I’pa(k—q"‘kl))

q.k1
PLP2,03

— 6(0F @y (K1) F pa(Q) 5k —q — 1)) T+ Vi (K, g k)
+ [8(0 —@p (K1) — @pa(Q) +Gps (K —q — K1) — 8w+ (K1) +050(q) =&k —q —k1)) I} . (36)

Substituting (35) into (24), we derive the expression for
the polariton Green’s function in the first approxima-
tion as

1
D, (I50) = 0, ()
™

14 Ak, O (w) — 1, T (w)
2 — Qi (0) [ Ay (@) —i7100() ]

where we have introduced the notation

(37)

Qe () = iy D () By O (0), (38)
Arp(0)= 14 Ak, T (w)+ Ak, T (w)
+ [Ak P (@) Ay (w)

—Ye P (@7, (w) ], (39)
Ak,,(i)(w)EReRkp(i)(w)/Qkp(i)(w) , (10)
i) (0)=Tm Ry, (@) /Gy P (@) ,

Yien() =710 (@) 1107 (@) - (41)

1 C. Mavroyannis and K. N, Pathak, Phys. Rev. 182, 872
(1969), ‘



1 INTERACTING POLARITON WAVES IN MOLECULAR CRYSTALS

The expression (37) shall be used in the next section to
study the excitation spectrum of polariton waves in
molecular crystals.

IV. EXCITATION SPECTRUM
A. First Approximation

Using the well-known relation for the spectral func-
tion
Jxp(w)= —2 ImD,(k,w)(ef*—1)71, (42)

and substituting the imaginary part of (37) into (42), we
obtain the spectral function in the first approximation

2
Jk,,<1><w>=<eﬂw—1>—l(—)fzk,,<—><w>

Qkp2(w)7k" (w) + I:w2 ~Qkp2(w) ]Vkp &) (w)
(07— 01, 2(0) A () T4 [ 21y 2() 71 () T

The spectral function (43) describes the behavior of the
polariton excitation spectrum in the whole range of
frequencies w and it is an asymmetric Lorentzian line
even when the w dependence in the expressions for
Q2 (w), Arp?(w), and v, ® (w) is neglected. The asym-
metry of the absorption line is caused by the damping
function vk, (w) which is, in general, different than
zer0, Yi, (@) Sy (@)

To study the excitation spectrum of (43) it is sufficient
to examine the solutions of the equation

(43)

)
— ImD, ™ (k,w)=0.

dw

(44)

Using the assumption that the functions Q,%(w),
Agp(w), and yx,(w) vary slowly with w and may be con-
sidered as constants in the neighborhood of frequencies
w2~ ex,?, where ex,? is the square of the energy of excita-
tion obtained from the positive solutions of (44) and is
equal to

exo2= Qe { =710 /1100 O
+[(Akp+7kp(+)/7kp(—))2+'Ykp2:|1/2} ) (45)

where Q= (ex), Vi, P =71, (exp), and Ay,
= Ag,(ex,). Considering that v, /ye, V21, A, 21,
and using (45) we find that the energy shift from the
maximum frequency corresponding to a symmetric
Lorentzian line is equal to

€xp?— Qi ?Agp= Qkpz{ - (Akp+7kp<+)/’)/kp(_))
FL A+ 71D /v v 12} . (46)

The expression (46) indicates that the energy shift from
the maximum frequency of the symmetric Lorentzian
line depends entirely on the value of the damping func-
tion yke(exp). In the case of resonance at frequencies
w?~e,?, the damping function 7yx,(ex,) cannot be dis-
regarded in (46), for the same reason that it must be
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retained in the denominator of (43). Therefore, in the
neighborhood of frequencies w?~ey,? the spectral func-
tion (43) may be written as

2
T (w) ~ (6P — 1)“<~>S~2k0 (ex,)

Qkp2(fkp)7kp(6kp)+ [‘02 - Qkp2(ekp)]"/kp & (Ekp)
[60? = Quep (i) Ay (e1cp) T [ Qs V100 (ep) I

provided that ey,?, given by (45), satisfies at least one of
the following relations:

exp”— [ 05, (@) £y, (K—q) =0,
€xo>— [@p, (K1) 5, (Q) £, (k—q—k1) ]2=0,

a condition that is required so that the damping func-
tions vk, ™®(ex,) are different than zero. The relations
(48) and (49) are derived from the arguments of the &
functions appearing in the expression (36).

In the limit when the damping functions vi,® (ex,)
may be considered to be very small but finite, vy, ®
(exp)<K1, the resonance band described by the func-
tion (47) is an asymmetric Lorentzian line with maxi-
mum at frequencies w?~ex,% In the case of exact res-
onance, when w?= ex,? the function (47) becomes

Tio® (exp) = (2/m) (P8 —1) T, ews),  (50)

where T'wp(ex,) and TI'y,'(ex,) are the width and the
height of the resonance band in energy units, respec-
tively, with

Tiep(exp) = 285, Py,
X [(1+Akp'Ykp(h)/'Ykp(_H)2+'Ykp2(7kp(_)/7kp(+))2]”2
=+ Ay /1Py, O 72 (51)

It is easily seen from (51) that the expression for
T'x,(ex,) is made up of the product of two factors: The
first one, (y, vy, represents the bandwidth in
energy units of a symmetric Lorentzian line, while
the remaining factor indicates the deviation from the
symmetric line caused by the existence of the damping
function v,

With reference to our discussion in the preceding
section regarding the coupling functions appearing in
the expressions (A6)-(A9), (A16), and (A17) as well as
from (36) and the definition of the functions y,®,
Eq. (40), it follows that vy, and vy, are of the
same order of magnitude; therefore, both functions are
either finite or go to zero simultaneously. Thus the
spectrum described by the function (47) for vy, <1
resonates at maximum frequencies w?~ex,? obtained
from the solutions of (45) and has an asymmetric
Lorentzian line shape with a bandwidth of the order of
T'x,(exs) shown by the expression (51). Since v, (exp)/
Yip(€exp) S35, the deviation from the symmetric Lorentz-
ian line depends entirely on the value of the damping

(48)
(49)
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function yx,(ex,). In discussing the excitation spectrum
of (43), we have neglected the w dependence of the
damping functions yx®(w). This assumption is justifi-
able because we are concerned with the polariton excita-
tion spectrum at zero temperature and in most physical
problems the nature of the real final states is such that
the relation (9/0w)yx,* (w)<K1 is applicable.

For values of w not near Qi,2(w)Ax,(w), that is, in the
vicinity of the edges of the polariton absorption band
the spectral function (43) can be approximated by

2 -
i, (@)1, ) (@) F 0Py, )
[0 =2, (@) A @)

We remark that the two terms in (52) behave differ-
ently with respect to w. For example, for large values of
o considering only the leading terms in (52) the func-
tions i, (w) and g, (w) are proportional to w™*
and w2, respectively. Therefore, for very large values of
o such behavior should be observed experimentally in
the vicinity of the edges of the polariton absorption
band.

In the limiting case when both damping functions
7, (w) go to zero simultaneously, the spectral func-
tion (43) tends to a & shape distribution, i.e.,

]k,,(l)(w) = 2(6‘5"’ - 1)—1Qkp(—) (w)
X 8(0? = Quep ™ () iy (@)
for yi,®(w) =0 (53)

(52)

where the functions Q,®(w) are given by (32) with
the scattering function Ry, (w), which is now a real
quantity, determined by the expression (34). The spec-
tral function (53) corresponds to the transparent region
of frequencies of the crystal and has a §-function dis-
tribution peaked at frequencies &, determined by the
real solutions of the equation

EkpZ_Qka_)(zkp)Qkp(_) (‘ékp) =0 ’ (54)

where Qy,*(é,) are obtained from the expressions
(32)-(34) by replacing w by &, Then (53) becomes

Tiep® () = 2(eP2 — 1)1, () 8w —&s?) . (35)

In this case, the polariton waves propagate in the
medium without damping with frequencies &, derived
from the solutions of (54), which indicates that the
crystal is transparent in the range of frequencies &,.
Rewriting (32) as

Q1o @ (Eiep) = iy @ (€1ep) + Ricp ™ (e,

and if we make some drastic approximations which are
correct only as far as the order of magnitude is con-
cerned, i.e., take Ry, (&xp)~Rip™ (xp)=Rip™ (Gxp),
Qi ® (6xp) ~ By (%) then the expression (54) is
reduced to the approximate form

(56)
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€xp _wp(k) ~ [‘;’p(k) _wp(k) + ‘:’p(k):l
+ [‘*’p(k) _‘I’ﬂ(k) +¢?’p(k):|2‘:)p(k)
X [exp?—@,2(k) 7'+ Ri, ¥ (&) . (57)

The expression (57) represents the equivalent result
obtained by applying a power series expansion in (54)
and retaining only the first nonvanishing term. If in the
first term on the right-hand side of (57), that is defined
by (26) and (27), we take (£&'(q)£/(q))~0 and
(£,(q),(—q))=0, then the resulting expression for
&,(k) can be employed to describe the probability ampli-
tude in energy units for the three-photon absorption
process far from resonance, which has been considered
by Toshich? via first-order perturbation theory. Similar
contributions arise from the amplitude Q; contained in
the expression for @,(k). If &, as well as the &,(k)’s
are replaced by the corresponding unperturbed fre-
quencies, w,(k)’s, in the expression for the cubic an-
harmonic terms that appear in Ry, (x,), the resultant
expression can be reduced to that derived by Toshich’
by means of second-order perturbation theory.

B. Second Approximation

In the limiting case when the imaginary part of the
polarization operator in the lowest approximation tends
to zero, i.e., i, (ex,) — 0, the polariton Green’s func-
tion (24) in the first approximation becomes

Dy (w) = (1/m) e, O (&) [ —&,” 171, (58)

where the frequencies €, are determined by the solu-
tions of (54). Mathematically, this situation means that
the frequencies &, do not satisfy the requirements of
the Eqgs. (48) and (49) corresponding to the arguments
of the § functions appearing in the expression for the
imaginary part of the polarization operator in the
lowest approximation, while the physical implications
are that the bare polariton is dressed by the anharmonic
field of the others and the resulting quasiparticle with
energy &, may be called the “physical polariton.” It is
easily shown that the excitation spectrum described by
(58) results from an equivalent Hamiltonian, that is
correct in the first approximation, had has the form

JeW =const+F 3 [, () + i, O (&) JE, () £, ()
+% kz [Qkp(+)(gkp) _Qkp(_)(ékp)]
XL E(—k)+£KE(=k)]. (59

In the second approximation, the polariton Green’s
function (24) may be written as

D1y ()= (1/7) Qs ()

X [w? =105, () ', O (w) I, (60)
where
101, ) (@) = Dy & (€xp) +3[ P11 P (K05 )
+PuP(kp; —w0)£ P12V (k,p; w)
£P1W(kp; —w)], (61)
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and the superscript (1) indicates that the quantities in
question have to be evaluated by means of the Hamil-
tonian (59). Performing the calculation we find that
the derived expression for Dy,®(w) has similar form
with that of (37) but now all the expressions appearing
in (37) are correct in the first approximation, i.e.,

1
Dy, () = —1{, ()

™
14184, 7 (@) —i'ya, O ()
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where the expressions for Ag, (), Y1, P W), Y&, ® (),
and Q,(w) are obtained from the corresponding ones
for Arp(w), Yio(w), Yi,®(w), and Qyy(w), respectively,
by making the following replacements:

@p(K) = €p,  @p(k) = F[ Qo™ (€1c) - iep () 1,
p(K) = F[ i, (&) — 2, 7 (&) 1,

for each particular frequency mode. The relations (63)
become obvious when a comparison between the

(63)

(62) Hamiltonians (31) and (59) is made. As an example, we
02—, D2(00) [ A, @ () —y16p V(@) ] give the expressions (32)-(35) in the new representation:
104, & () = i, & (w)+ Rie, P (w) (64a)
IQKP e (“’) = Qkp(+)(gkn)+ ["-’p(k) —Qkp(g) (gkp)]%kp[wz_ gkpz:]—l ) (64b)
1hiep O (@) = Quiep ) (&xcp) [0 (&) — iy ) (E1p) P[0 — s’ T 7, (64c)
€n(Q)+Ep(k— A €n(q) —&n(k—q)]
Ry ()=2 3 1@ (k,q) [én(Q)+&n(k—q)] 2T 17w (k,q) Cén(q p
doprpr W —[En(Q+en(k—q)  vere w*—[E(q) —&x(k—q) J*
+2 57 1V4(*-)(k,q,k1) [em(k1)+ épz(q)_l" 5»3(k—q—k1)]
m(.l;}:.;u wl— [Epl(kl)"' én(Q)+ ;E'p:s(k_q_kl):l2
) (1) (@) + ok —q 1) ]

F2 S 7@ (kg k) [ (k1) —&5(Q) +&ps(k—q—k1 (63)

q,k1
PLP2,p3

where the coupling functions V;® (k,q), V:® (k,q),
1V, (k,q,k1), and 'V, (k,q,k) are given by (A7)-
(A9), A(16), and (A17), respectively, after the replace-
ments (63) have been made. In this approximation, the
coupling functions V;® (k,q) and V& (k,q,k;) de-
pend entirely on the numerical value of the quantity
Qi ™ (€xp) — i, (Ex,), Which is taken equal to zero
when conventional perturbation methods are used for
the calculation. The renormalization of the frequencies
for the polariton modes that has been achieved in this
approximation is the outcome of the self-consistent
manner in which the calculation has been conducted.
The excitation spectrum described by (60), which is
now due to the interaction among the physical polariton
modes, can be discussed in the same manner that has
been employed in the first part of this section regarding
the polariton Green’s function in the first approximation.
Therefore, there is no need for repetition.

V. SUMMARY

We have presented an accurate microscopic approach
for the calculation of the optical anharmonic excitation
spectrum of molecular crystals by means of the Green’s-
function method. The development of a general expres-
sion for Dyson’s equation describing the system of
interacting polariton fields has made possible the evalua-
tion of the polarization operator and consequently the
polariton Green’s function in successive and well-

02— [ (k1) —Epa(@) + &k —q — k1) J2’

defined approximations. The important effects on the
frequency of the polariton modes arising from the
renormalization procedure in the sequence of approxi-
mations have been pointed out. Physical phenomena
occurring when the system of interacting polaritons is
either near or far from resonances or in the transparent
range of frequencies of the crystal have been con-
sidered. Application of the results developed in the
present study to specific crystals shall be reported later.

APPENDIX

The components of the polarization operator that
appear in the expression (30) consist of linear combina-
tions of two- and three-polariton Green’s functions
which are calculated here by means of the renormalized
zeroth-order Hamiltonian (31). If we introduce the
operator

A1(q, k—q)= (&, (@' (k—) &,(—Dén(a—k)
Epzf(k—q)gm(_Q) £P1T(q)gpz(q_k))) (Al)
then using (31) we derive the equation of motion for the
Green’s function ({(4(q,k—q);A%(q, k—q))) in the
form
L(g, k—gq; 0){(A(q, k—q); A'(q, k—q))) = (1/2n)
X([A4(q, k—q), A1(q, k—q)]-B)t=r, (A2)

where L(q, k—q; w) is a four-by-four matrix having the
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following nonzero matrix elements:

Lu(q, k—q; w) =0—0,(q) —é,n(k—q),
Lan(q, k—q;0)=Lu(q, k—q; —v),
Las(q, k—q; w) =0 —0,(q—K)+6n(a)
Li(q, k—q; 0)=Ls(q, k—q; —w),
Liz=Loy= —Ly1= — Lyp=—&,,(q),
Lyy=Los= Lagp=Ly= —&,,(k—q),

. /a
()
a

The determinant of the matrix L(q, k—q; w) factorizes
into

detL(q, k—q; ) = {w’ —[5,(q) +@p(k—q) %}
X {w2_[6’ﬂ1(q) '—‘:’ﬂz(k—q)]q ’
which shows that the poles of the Green’s function

((A(q, k—q); A*(q, k—q))) determined by the zeros
of (A4) are equal to

(A3)

(A4)

W= I:G’m(q)i&’nz(k_q)]z ’ (AS)
indicating the existence of frequencies that are equal not
only of the sum but also of the difference between the
two renormalized polariton modes &,,(q) and &,,(k—q),
respectively.

Solving the set of equations (A2) and then substitut-
ing the calculated expressions for the different combina-
tions of the two-polariton Green’s functions into (30),
we derive the two first terms that appear on the right-
hand side of (34) with the two-particle scattering ampli-
tudes V¥ (k,q) given by

Vi (k)= | & |22 +0-9) — |20 2w +0,%), (A6
Vi Q)= &2y 240,)
+206 (uv—+uvy), (A7)
Vs (k,q)=2[| &y | 2— | 20| Tty 0
Fda(ur—1o,), (AS)
VO (k,q) =2 | & | uyu_+4a_omy vy (A9)

where we have made use of the following notation:

- Eliépx(q) 4 ‘—‘-’pz(k—‘Q):l
5 dleu@ aak—gl’
Irén(q @,(k—q)
= — —+ , A10
2[‘:’/)1((1) ‘:’pz(k*q)] ( )
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&iEaiC;B ,

aEa(‘L pl;k—qy pz;k, P), (All)

BEB(_k) P;q; p1; k—q; P2)~

In deriving (A6)-(A9), we have made use of the expres-
sions (29b) in the limit of zero temperature for the dis-
tribution functions that result when the average value
of the commutator appearing on the right-hand side of
(A2) is taken.

The three-polariton Green’s functions can be calcu-
lated in the same way. For example, if we define the
operator A1z

Arast= (&6l 00T Esb ob 1 Btk 1 E1TE 58 o ETE o5
EabTE s E b TET £ 08T, (A12)
where 1= (ky,p1), 2=(q,p2) ,and 3= (k—q—Ky, p3), then

the equation of motion for the Green’s function
(A 123; A125")) is determined by making use of (31) as

_Z(I,Z,S 5 w)«fﬁ%; AVI23T>>
= (1/20)([A125,4A125" ] ) 1eer . (A13)

The function Z(1,2,3; ) is now an 8X8 matrix whose
nonzero matrix elements are equal to

zu(w) :fzzz( —w)=w—d1—®2—®3,
Zas(w) =Z44(——w) =w+w1—d2—d3;
Lig(@)=Los(—w)=w—a1+a2—a3,

Lin(w)=Ls(—w) = w—d1—ata3;

Lis=Ly=—Ly=—Lp=Ly=Lg=Li=Lyx=—a,
Lis=Los=Lss=Lu= —Les=Lry=Lys= —0»,
Ly=Los=Lss=Lis=Lsi=Les

=—Ln=—Lgp=—0a0;. (Al4)
In (A13) 4 is an 8X8 unit matrix with all the off-
diagonal elements equal to zero while the diagonal ones
consist of a sequence of +1 to —1. The determinant of
L(1,2,3; w) is equal to

detZ(1,2,3; w) = [w?— (@1-@st@s)?]
X [w?— (@1+@2—3)][w?— (@1—@2+@3) 7]
X [wr— (@s+@s—a1)?].  (A15)
The zeros of (A15) determine the poles of the Green’s
function {((41s3; A125")), indicating the existence of
frequencies of all possible combinations among the three
renormalized polariton modes.

Solving the system of equations (A13), substituting
the results into (30), and using (29b) in the limit of zero
temperature, we obtain, after some lengthy algebra, the
last two terms appearing on the right-hand side of (34)
where the three-polariton scattering amplitudes
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Vi#(k,q,k1) are found to be

@2(@3FB3)[ @1 W1wa+ D182 B1%0,
V(0 lq) = 3| QA0 1] 4014304 Gy LT o
wlwo (.02(4)3 w1 (:71(;)2 (:)12(:)2

2wzr(w1wz—w1w2)w3 D

+3(4Q5302) (Q2401) - —

wlcbzl_ w1w2w3 Wy

2w169

w3
._>+ —
w3

Wi

Vi (kg 1) = 3| Q401 | 2ufroa+ (Q2==401) (405 302)
38162
|
wWiwe

601 D3 261 (w2
X [ (M:i: ——u) (6u+ %ﬁl%)[j“(_— +
&1 @3 ®1 \&2
201w [Bs B3 o183
(-

631632 B1 /w2 w3 1 4(2)2 2
Bl s (ol I S a Ry s
Wi w1 \Wg w3 8 w2 wa w3 w1w2w3

wWiwa

20102
+|4Q3:F3Q2|2{[ — 2+

w1ws2

261 Bod3 O1fws @3 B Bafr w3 B3 Pzfw1 @
——{ 1% A+ —F )+ A—+—7F >+ —+—F
n Wol3 D1\@s @3 @2 Wo\&1 @3 @3 @3\@D1 @2
where
1/@1 @2 @3 @103 103
=\t t= "“——“*>
4\&; @ @3 W1wew3
1 W1W2  WwW3 W13
p= A1+ —+—+—),
4 D1y Wz W13
(I’l 5)1&)2(53:{:@1(32@3
Pgg=|———"""— ,
w1 &)10-:)2(‘1.')3
Q1=01(ky,p1; q,02; K—K1—q, p3; =K, p), Q2=Qs(k1,01; Q,p2; k—k1—q, ps; K,p)

QsEQ3(k1,p1; q,p2; —k; P; k_kl_q> p3) .

],

S
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(A16)

) e

(A18)

(A19)

(A20)

(A21)

We remark that in the approximation used here there is no coupling between the two- and three-polariton Green’s

functions.



